210

Subscripts

- at CP С
- gaseous phase g
- liquid phase
- R reduced property
- v change upon vaporization
- rectilinear diameter line, $(\rho_1 + \rho_0)/2$ p
- coexistence property σ
- 1 single-phase property
- 2 two-phase property

Registry No. Ethylene, 74-85-1.

Literature Cited

- Douslin, D. R.; Harrison, R. H. *J. Chem. Thermodyn.* **1976**, *8*, 301.
 Harrison, R. H.; Douslin, D. R. *J. Chem. Eng. Data* **1977**, *22*, 24.
 Moldover, M. R. *J. Chem. Phys.* **1974**, *61*, 1766.
- (4) Angus, S.; Armstrong, B.; de Reuck, K. M. "Ethylene, 1972"; Butter-
- worths: London, 1972.
- (5) Hastings, J. R.; Levelt Senger, J. M. H.; Balfour, F. W. J. Chem. Thermodyn. 1980, 12, 1009.

- (6) Hastings, J. H.; Levelt Sengers, J. M. H. "Proceedings of the 7th Symposlum on Thermophysical Properties"; American Society of Mechan-ical Engineers: New York, 1977; p 794.
- (7) Nehzat, M. S. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1978.
- (8) Walton, C. W.; Mullins, J. C.; Holste, J. C.; Hall, K. R.; Eubank, P. T.
- (a) Watch, J. 1978, 24, 1000.
 (9) Hall, K. R.; Eubank, P. T. Ind. Eng. Chem. Fundam. 1976, 15, 80.
 (10) Nehzat, M. S.; Hall, K. R.; Eubank, P. T. "Equations of State in Engineering and Research"; American Chemical Society: Washington, DC, 1979; Chapter 6.
- Yang, C. N.; Yang, C. P. Phys. Rev. Lett. 1964, 13, 303.
 Hall, K. R.; Eubank, P. T. Ind. Eng. Chem. Fundam. 1976, 15, 323.

Received for review October 1, 1981. Revised manuscript received July 28, 1982. Accepted January 20, 1983. Financial support of this project was by the National Science Foundation (ENG 76-00692).

Supplementary Material Available: The complete Table II containing the complete thermophysical properties of ethylene for isotherms ranging from 280.15 to 284.15 K at 0.2 K intervais for densities from 4.5 to 11.0 g-mol/dm³ (21 pages). Table II of the manuscript is a sample for a single isotherm-the critical isotherm. Ordering information is given on any current masthead page.

Three-Phase Liquid–Liquid–Vapor Equilibria in the Methane +*n*-Pentane + *n*-Octane, Methane + *n*-Hexane + *n*-Octane, and Methane + n-Hexane + Carbon Dioxide Systems

Robert C. Merrill, Jr., Kraemer D. Luks,[†] and James P. Kohn*

Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

The phase behavior of three ternary systems (methane + n-pentane + n-octane, methane + n-hexane + n-octane, methane + carbon dioxide + n-hexane) are presented for their region of L1-L2-V immiscibility. Liquid-phase compositions and molar volume data are presented as a function of temperature and pressure for the three-phase immiscibility region. The boundaries of the immiscibility regions are detailed. The methane + n-pentane +*n*-octane immiscibility is bounded by a locus of K points $(L_1-L_2 = V)$, LCST points $(L_1 = L_2-V)$, and Q points $(S-L_1-L_2-V)$. The methane + *n*-hexane + *n*-octane Immiscibility is bounded by a locus of K points, LCST points, and Q points and the L1-L2-V locus of the methane + n-hexane binary system. The methane + carbon dioxide + n-hexane immiscibility is bounded by a locus of K points and LCST points and by the L_1-L_2-V locus of the methane + *n*-hexane binary system. The L_1-L_2-V locus of the methane + n-hexane binary system is also presented.

Introduction

We are midway through an extensive study of liquid-liquidvapor phenomena in liquefled natural gas systems. Earlier papers by Hottovy et al. (1, 2) reported the phase behavior of the system methane + n-octane with the addition of a heavier solvent species. These heavier solvent species included ethane, propane, n-butane, and carbon dioxide. Hottovy showed

[†] Present address: Department of Chemical Engineering, University of Tulsa, Tulsa, OK 74104.

that the addition of these species could induce L1-L2-V behavior in systems in which such behavior is not normally observed.

The three-phase regions studied by Hottovy were bounded by loci of K points ($L_1-L_2 = V$), LCST points ($L_1 = L_2-V$), and Q points $(S-L_1-L_2-V)$, with a tricritical point at the point where the K-point and LCST-point loci intersect. Creek et al. (3) describe tricritical phenomena in systems containing methane and higher paraffins.

This paper presents the results for three new ternary systems which exhibit a region of immiscibility. These systems are methane + n-pentane + n-octane, methane + n-hexane +*n*-octane, and methane + carbon dioxide + *n*-hexane. The data presented herein include the compositions for the two liquid phases, and their molar volumes. The compositions and molar volumes for the bounding loci are also presented. The systems containing n-hexane are of great interest, because the methane + n-hexane binary forms its own L₁-L₂-V immiscibility locus. Data for the binary are presented and compared with earlier work by Lin et al. (4).

Experimental Section

This study employed apparatus previously used by Kohn and co-workers in other cryogenic studies (5). Earlier writings (1, 6) have detailed the experimental procedure for L_1-L_2-V studies. For brevity's sake, the procedure will be only quickly sketched here.

All the phenomena were observed in a glass cell marked and calibrated for visual inspection. Stoichiometric and volumetric measurements were used to compute the compositions and molar volumes of each phase. A platinum resistance thermometer was used to measure the temperature of the system. This thermometer was calibrated to the 1968 IPTS scale and

Figure 1. Boundaries of the L_1-L_2-V immiscibility region for the system methane + n-pentane + n-octane.

is estimated to be accurate to ± 0.03 K. The pressure of the system was measured with a Heise Bourdon tube gauge, which was accurate to ± 0.07 atm. The gauge was periodically checked against a dead-weight piston. The cell markings permitted the direct reading of the phase volumes to ± 0.02 cm³.

The gas phase was assumed to be essentially pure methane in the methane + n-pentane + n-octane and methane + nhexane + n-octane systems, except at K points where the gas-phase compositions were calculated directly. This assumption was justified by the extremely low vapor-phase mole fractions of *n*-hexane and *n*-pentane in methane as reported in the literature (4, 10). The gas-phase composition for the methane + carbon dioxide + n-hexane system was assumed to be composed of methane-carbon dioxide in their equilibrium ratio as reported by Mraw et al. (7). The compressibility of the gas phase was taken from NBS data for pure methane in the first two cases and was calculated by the Soave-Redlich-Kwong equation as modified by Graboski and Daubert (8, 9) for the last case. The small errors inherent in these assumptions were further reduced by minimizing the amount of gas phase in the cell at all times.

The methane used in this study was Linde "Ultra Pure" grade with a stated purity of 99.97 mol %. The *n*-hexane and *n*octane were both products of the Humphrey Chemical Co. with a stated purity of 99 mol %. The carbon dioxide was Matheson "Coleman Grade" with a stated purity of 99.99 mol %. The *n*-pentane used in the study was produced by Phillips Petroleum Co. with a stated purity of 99 mol %. The methane, *n*-pentane, *n*-hexane, and *n*-octane were used without further purification. The carbon dioxide was prepared by flashing it from the supply cylinder at room temperature to a storage cylinder at 273.15 K. The vapor phase was then vented to remove impurities.

The error is estimated to be such that the liquid-phase volumes are accurate to at least $\pm 1.6\%$; solute composition in the L₁ phase is reliable to $\pm 2\%$, and in the L₂ phase to $\pm 8\%$. The second solvent compositions (*n*-pentane, *n*-hexane, carbon dioxide) are adjudged to be accurate to $\pm 3.5\%$. These are very conservative estimates based on the limitations enumerated above.

Experimental Results

The results for the methane + n-pentane + n-octane system are presented in Tables I and II, those for methane + n-hexane + n-octane in Tables III and IV, , and those for methane + carbon dioxide + n-hexane in Tables V and VI. The immiscibility regions in P-T space are illustrated in Figures 1–3, respectively. The first table for each system presents the

Table 1. Raw Data for the *n*-Octane-Lean Liquid Phase L_2 of the System Methane + *n*-Pentane + *n*-Octane

ystem methane	+ <i>n</i> -ren	talle $\pm n$ -Octalle		
		mole	mole	molar
	press.	fraction of	fraction of	vol. mL/
temn K	atm	n-nentane	n-octane	(g-mol)
		$K (L_1 - L_2 = V)$		
196.95	52.60	0.0077	0.0018	83.6
196.97	52.60	0.0078	0.0019	87.2
197.73	53.08	0.0090	0.0027	87.6
200.61	57.05	0.01620	0.0011	86.8
200.71	57.08	0.01450	0.0019	70.1
101.96	44 01	$Q(S-L_1-L_2-V)$	0.0044	(10
191.86	44.81	0.0236	0.0044	64.0
192.15	45.93	0.0192	0.0027	69.4
192.83	40.3/	0.0179	0.0035	64.7
193.22	4/.43	0.0151	0.0023	63.2
		LLV		
190.00	41.93	0.0631	0.0091	59.6
192.00	44.93	0.0310	0.0045	66 7
192.00	45.05	0.0240	0.0075	65.4
192.00	45 21	0.0252	0.0078	67.4
194.00	47.84	0.0232	0.0046	65.6
194.00	47.04	0.0174	0.0000	65.0
104.00	49.01	0.01/4	0.0032	66 7
194.00	48 51	0.0103	0.0030	62.9
194.00	10.51	0.0132	0.0033	67.4
104.00	10.00	0.0133	0.0029	67.4
104.00	40.00	0.0113	0.0020	60.4
194.00	40.72	0.0122	0.0034	09.4
190.00	50.09	0.0154	0.0056	70.7
190.00	51.02	0.0140	0.0043	/5.3
196.00	51.23	0.0099	0.0028	/0.5
196.00	51.3/	0.0084	0.0022	71.9
196.00	51.44	0.00/9	0.0020	/1.4
198.00	53.14	0.0366	0.0020	63.6
198.00	53.28	0.0248	0.0014	69.9
198.00	33.47	0.0151	0.0009	80.3
200.00	33.75	0.0399	0.0020	61.2
200.00	35.81	0.0339	0.0020	64.1
200.00	55.89	0.0332	0.0013	62.7
200.00	55.96	0.0306	0.0016	68.0
55				·
				_ }
				UCEP
			к	\sim
				1
45 -			/	
			/	' ļ
1				

Figure 2. Immiscibility boundaries of the system methane + n-hexane + n-octane.

data for the L_2 phase (Tables I, III, and V), and the second gives the results for the L_1 phase (Tables II, IV, and VI). The

molar

mole

Table II. Raw Data for the *n*-Octane-Rich Liquid Phase L_1 of the System Methane + n-Pentane + n-Octane mole

Table III. Raw Data for the *n*-Octane-Lean Liquid Phase L_2 of the System Methane + *n*-Hexane + *n*-Octane

		press.,	fraction of	fraction of	vol, mL/
	temp, K	atm	<i>n</i> -pentane	n-octane	(g-mol)
	· · · · · · · · ·	v	$(\mathbf{I} \mathbf{I} - \mathbf{V})$		
	105.05	51.44	$(L_1 - L_2 - V)$	0 1 2 7	70.0
	193.93	51.44	0.170	0.137	10.0
	190.31	51.85	0.220	0.113	30.4
	190.0/	52.33	0.189	0.114	/0.0
	199.84	49.34	0.172	0.031	05.0
	200.35	56.84	0.104	0.015	/0.8
	201.28	58.41	0.135	0.014	62.4
		0	(S-I -I -V)	`	
	189 32	41 71	0163	0.081	637
	100.52	43.62	0.169	0.104	65.6
	101 70	45.02	0.185	0.104	50.6
	191./9	40.11	0.105	0.070	50.0
		LC	$ST(L_1 = L_2 - V)$	V)	
	193.58	46.97	0.100	0.018	58.5
	193.75	47.10	0.104	0.019	58.6
	196.09	50.12	0.090	0.013	5 9.9
	196.25	50.41	0.093	0.014	60.2
	197.90	52.72	0.091	0.010	58.8
	199.22	54.55	0.079	0.007	60.4
	199.54	55.07	0.086	0.008	60.3
	177.01				
			$L_1 - L_2 - V$		
	190.00	42.27	0.153	0.058	60.6
	190.00	42.37	0.163	0.071	62.8
	192.00	44.89	0.162	0.061	61.7
	192.00	44.97	0.170	0.074	63.9
	192.00	45.25	0.180	0.109	68.5
	192.00	45.39	0.193	0.096	67.4
	192.00	45.45	0.199	0.103	54.0
	194.00	47.43	0.175	0.061	63.3
	194 00	47.64	0.169	0.064	62.0
	194.00	47.82	0.174	0.076	65.2
	194.00	47.97	0.176	0 107	66.3
	194.00	48 31	0.180	0.107	65.7
	104.00	48.31	0.100	0.000	54 4
	194.00	40.30	0.202	0.105	54.4 60.7
	194.00	40.30	0.229	0.110	60.0
	190.00	49.92	0.130	0.024	59.0
	196.00	50.12	0.130	0.023	50.7
	196.00	50.56	0.176	0.061	03.2
	196.00	50.64	0.176	0.067	02.0
	196.00	50.83	0.181	0.079	04.0
	196.00	51.17	0.185	0.091	65.0
	196.00	51.37	0.225	0.116	59.0
	198.00	53.07	0.147	0.028	59.7
	198.00	53.69	0.181	0.063	62.8
	198.00	53.89	0.179	0.068	61,5
	200.00	55.78	0.104	0.0133	58.9
	200.00	55.99	0.121	0.014	54.2
	200.00	56.31	0.129	0.015	59.4
:					
					frierindu
60	Γ				
İ					
	}		V /		
			``		
		ι	JCEP		
. 50					
1 ~~					
Ê		/			
ē					
٩	-	BINARY	-1.051		
40	ŀ	1/			
	l	//			
		/			
		- 0			
			195	205	
	185		100 T 443	200	215

Figure 3. Immiscibility boundaries of the system methane + carbon dioxide + n-hexane.

		mole	mole	molar
	7.000	fraction of	fraction of	vol mI /
	press.,	fraction of	fraction of	voi, $mL/$
temp, K	atm	<i>n-</i> hexane	<i>n</i> -octane	(g-mol)
		$K(L_1 - L_2) = V$	7)	
193 15	48.28	0 00 54	0.0034	114 9
102.20	40.44	0.0001	0.0051	00.7
195.20	48.44	0.0	0.0156	88./
193.69	48.96	0.0017	0.0012	90.2
193.85	48 94	0.0017	0.0021	99.0
104 14	40.27	0.0017	0.0019	91.04
194.14	49.37	0.0098	0.0018	81.04
194.29	49.63	0.0051	0.0013	91.3
		$Q(S-L_1-L_2-V)$	V)	
181 38	32 76	` 0 0340	0.0053	58.0
101.00	32.70	0.0347	0.00000	50.0
181.92	33.38	0.0331	0.0046	5/ .9
182.61	34.20	0.0292	0.0042	57.40
182 20	36 16	0.0185	0.0067	52.44
197.60	40.50	0.0124	0.0020	62.2
107.02	40.39	0.0134	0.0030	02.5
191.94	46.29	0.0068	0.0029	71.2
192.00	46.65	0.0059	0.0021	72.2
102.20	16 56	0.0075	0.0026	71.5
192.20	40.50	0.0075	0.0050	/1.5
		Г Т 37		
		$L_1 - L_2 - V$		
182.00	33,38	0.0347	0.0034	55.6
182.00	33.38	0.0335	0.0033	55.0
182.00	32 44	0 0207	0.0010	57.00
102.00	55.44	0.039/	0.0019	51.72
182.00	33.44	0.0437	0.0037	58.0
182.00	33.45	0.0313	0.0039	61.5
182.00	33 51	0.0330	0 0030	60.8
102.00	22.51	0.0350	0.0055	(0.0
182.00	33.64	0.0478	0.0022	63.9
180.00	31.33	0.0429	0.0053	54.0
180.00	31 33	0.0405	0.0050	55.6
100.00	21.40	0.0405	0.0030	53.0
180.00	31.40	0.0505	0.0040	53.7
178.00	29.28	0.0798	0.0038	54.5
178.00	29.29	0.0449	0.0056	54.0
184 00	35 55	0 04 79	0.0036	50.0
104.00	25.55	0.04/5	0.0050	57.7
184.00	35.62	0.0317	0.0043	30.8
184.00	35.62	0.0395	0.0035	59.8
184 00	35.62	0.0396	0.0031	57.6
194.00	25.60	0.0250	0.0060	57.0
104.00	33.09	0.0250	0.0009	57.0
184.00	35.69	0.0278	0.0090	59.6
184.00	35.69	0.0359	0.0055	5 9. 7
184.00	35 76	0.0340	0.0034	577
104.00	25.70	0.0040	0.0034	61 7
164.00	33.84	0.0579	0.0050	01.7
184.00	35.96	0.0261	0.0042	59.9
186.00	37.87	0.0280	0.0036	57.5
186.00	37 93	0.0335	0.0022	57.8
100.00	20.00	0.0333	0.0022	57.0
186.00	38.00	0.0343	0.0006	38.5
186.00	38.00	0.0291	0.0022	58.0
186.00	38.07	0.0312	0.0021	58.1
186.00	38 14	0.0219	0.0025	58 1
100.00	20.14	0.0217	0.0023	50.1
180.00	38.20	0.0239	0.002/	59.1
186.00	38 20	0.0307	0.0011	59.4
186.00	38.21	0.0334	0.0006	59.2
188.00	40 31	0.0213	0.0037	61.0
100.00	40.01	0.0215	0.0057	01.0
188.00	40.31	0.0286	0.0022	58.82
188.00	40.52	0.0259	0.0027	59.4
188.00	40.58	0.0274	0.0020	58.8
100.00	10.00	0.0274	0.0020	50.0
100.00	40.39	0.0191	0.0002	J7.7
188.00	40.59	0.0287	0.0022	5 9 .7
188.00	40.72	0.0281	0.0019	59.7
188.00	40 02	0.0110	0.0037	61.6
100.00	40.23	0.0117	0.0007	60.7
130.00	42.90	0.0255	0.0018	00.7
190.00	4 2.90	0.0249	0.0018	60.8
190.00	43.17	0.0188	0.0016	63.0
190.00	43 17	0.0234	0.0016	61.6
100.00	12.17	0.0234	0.0010	62.4
190.00	43.1/	0.0245	0.001/	03.4
190.00	43.52	0.0108	0.0021	63.9
192.00	45.96	0.0199	0.0013	65.4
192.00	46 23	0.0123	0.0037	76 1
102.00	16.20	0.0000	0.0007	71 7
192.00	40.30	0.0089	0.0023	/1./
192.00	46.36	0.0046	0.0038	71.5
192.00	46.58	0.0050	0.0027	73.6
194 00	48 68	0.0149	0.0001	70.0
10/ 00	10.00	0.0074	0.0001	77 2
194.00	49.09	0.0074	0.0034	12.5
194.00	49.16	0.0039	0.0011	77.2

	nress	mole fraction of	mole fraction of	molar vol. mL/		DIESS	mole fraction of	mole fraction of	molar
temp; K	atm	<i>n</i> -hexane	n-octane	(g-mol)	temp, K	atm	<i>n</i> -hexane	<i>n</i> -octane	(g-mol)
		$\overline{K(L_1 - L_2 = V)}$			182.00	33.25	0.2105	0.0184	63.6
193.06	48.21	0.2450	0.2008	94.5	182.00	33.37	0.2276	0.0434	68.8
193.35	48.49	0.2554	0.1446	84.2	182.00	33.44	0.2202	0.0171	66.5
193.56	49.00	0.2045	0.1387	73.4	184.00	35.54	0.2451	0.0333	70.4
193.76	49.06	0.2288	0.1297	77.2	184.00	35.68	0.2488	0.0465	72.7
194.24	49.53	0.2711	0.0201	71.8	184.00	35.69	0.2176	0.0125	64.2
194.86	50.24	0.2119	0.0390	56.7	184.00	35.75	0.2232	0.0113	65.5
195.02	50.31	0.2537	0.0103	64.9	184.00	35.76	0.2276	0.0198	65.8
					184.00	35.96	0.2415	0.0188	70.2
		$\mathcal{L}(S-L_1-L_2-V)$)		184.00	36.02	0.2414	0.0188	69.9
174.48	25.88	0.1819	0.0261	59.7	186.00	37.77	0.2232	0.0128	63.7
175.16	26.49	0.1752	0.0265	57.4	186.00	37.81	0.2022	0.0173	56.0
176.62	27.99	0.1997	0.0371	62.6	186.00	37.92	0.2392	0.0326	67.4
184.80	36.36	0.2467	0.0898	76.7	186.00	38.06	0.2375	0.0446	68.0
189.96	43.82	0.2042	0.1368	72.1	186.00	38.07	0.2256	0.0114	64.4
190.51	44.60	0.2126	0.1427	75.2	186.00	38.13	0.2380	0.0881	74.2
191.91	46.81	0.2206	0.1786	84.4	186.00	38.20	0 2379	0.0185	67.1
192.36	47.14	0.2333	0.1977	90.4	186.00	38.20	0.2575	0.0103	75 3
	T	ר ד ארי די די די די די	V)		188.00	40.25	0.2508	0.0184	57.8
174 (0	26.22	$L_{1} = L_{2} - 0.1247$	v) 0.0007	567	188.00	40.23	0.2300	0.0202	64 1
174.69	20.23	0.1247	0.0097	30./ 56.41	199.00	40.32	0.2520	0.0202	74 1
1/4.84	26.17	0.1507	0.0087	50.41	188.00	40.38	0.2070	0.0333	66.4
175.94	27.25	0.1557	0.0121	58.3	198.00	40.52	0.2343	0.0441	64.0
1//.14	28.39	0.0999	0.0056	55.05	100.00	40.52	0.2303	0.0237	45.9
177.81	28.88	0.1505	0.0087	56.9	100.00	40.52	0.2391	0.0160	65.0
178.29	29.48	0.1292	0.0063	56.4	100.00	40.05	0.2402	0.0203	60.1
178.43	29.62	0.1411	0.0068	57.1	188.00	40.05	0.2378	0.0279	61.5
179.02	29.16	0.1547	0.0089	57.5	100.00	40.72	0.2390	0.0220	62.4
		hinary I CST			100.00	40.75	0.2301	0.0132	62.1
192 01	3/1 18	0 1502	0.0	50.8	190.00	42.85	0.2354	0.0133	65.2
102.91	54.10	0.1392	0.0	55.0	190.00	42.90	0.2431	0.0224	60.5
		$L_1 - L_2 - V$			190.00	42.91	0.2384	0.0208	64.3
176.00	27.19	0.1587	0.0138	56.6	190.00	42.97	0.2437	0.0348	66.5
176.00	27.31	0.1944	0.0264	61.9	190.00	43.17	0.2433	0.0244	65.4
178.00	29.02	0.1491	0.0083	56.6	190.00	43.17	0.2445	0.0268	65.9
178.00	29.16	0.1757	0.0154	58.9	190.00	43.17	0.2451	0.0247	05.7
178.00	29.21	0.1959	0.0270	61.4	190.00	43.17	0.2376	0.0444	66.2
178.00	29.28	0 2014	0.0379	62.7	190.00	43.23	0.2271	0.0826	69.0
178.00	29.28	0.1555	0.0087	58.5	190.00	43.30	0.2318	0.0793	69.6
178.00	29.20	0.1777	0.0139	59.5	192.00	45.93	0.2754	0.0236	71.5
180.00	31 14	0.1881	0.0165	59.8	192.00	45.96	0.2605	0.0485	71.1
100.00	21.14	0.1001	0.0105	52.0	192.00	45.96	0.2685	0.0383	72.2

0.2033 data for the binary system methane + n-hexane are presented in Table VII.

0.2040

0.2053

0.1770

0.1902

0.1821

0.1861

0.2277

0.0384

0.0278

0.0088

0.0147

0.0103

0.0098

0.0313

0.0117

62.3

61.3

58.7

59.9

58.8

58.7

67.8

59.3

192.00

192.00

194.00

194 00

194.00

194.00

194.00

46.09

46.16

48.62

48 69

48.81

48.95

49.05

180.00

180.00

180.00

180.00

180.00

180.00

182.00

182.00

31.26

31.26

31.33

31.33

31.40

31.46

33.23

33.24

The region of $L_1 - L_2$ immiscibility for the methane + n-pentane + n-octane system (Figure 1) is quite similar to those reported in Hottovy's work. This region is three-sided, bounded by loci of K points ($L_1-L_2 = V$), LCST points ($L_1 = L_2-V$), and Q points $(S-L_1-L_2-V)$. Hottovy noticed that the region of immiscibility shifts toward lower temperatures and pressures as the second solvent increases in molecular weight. This trend is confirmed by the methane + n-pentane + n-octane system, which lies closer to the pure-methane vapor-pressure curve than any other three-sided region of immiscibility.

This progression ceases when n-hexane is the second solvent. This occurs because the methane + n-hexane system forms a binary L1-L2-V immiscibility in the region of the methane + n-hexane + n-octane ternary immiscibility. This binary immiscibility "cuts through" the expected three-sided immiscibility region. The resultant four-sided figure is bounded by K points, Q points, LCST points, and the binary immiscibility. The ternary's loci of K points and LCST points intersect the binary locus at its upper and lower critical end points (UCEP, LCEP), respectively. The immiscibility region is very narrow in pressure-temperature space, due to the similarity between n-hexane and *n*-octane. Indeed, this system might be considered to be mimicking the binary methane + n-hexane system (i.e., a quasi-binary in the spirit of Creek (3).

0.2793

0.2898

0.2634

0.2593

0.2586

0.2452

0.2753

0.0260

0.1047

0.0243

0.0370

0.0221

0.0453

0.0224

74.1

87.1

67.9

68.4

65.7

65.9

70.1

The binary methane + n-hexane immiscibility similarly forms one side of the methane + carbon dioxide + n-hexane system's region of immiscibility. However, carbon dioxide extends the L1-L2-V region to higher temperatures rather than lower as was the case for *n*-octane. There is no Q-point locus for this system; the binary locus forms the lower bound. The K-point and LCST-point loci intersect the binary's UCEP and LCEP. These critical loci also intersect each other at a tricritical point.

Data for the methane + n-hexane binary in this temperature range have been previously reported by Lin et al. (4). The binary measurements were repeated in this laboratory to provide both internal consistency and a check on the reasonableness of our reported data. Our data compare favorably with those of Lin and are shown in Table VII. Lin reported the K-point and LCST-point existence at 195.91 K, 51.37 atm and 182.46 K, 33.70 atm, respectively. The K point and LCST point elucidated in this study occurred at 195.72 K, 51.33 atm and 182.73 K, 34.05 atm, respectively. The difference between

Table V. Raw Data for the n-Hexane-Lean Liquid Phase L₂ of the System Methane + Carbon Dioxide + n-Hexane

		mole	mole	molar
	press.,	fraction of	fraction	vol, mL/
temp, K	atm	<i>n</i> -hexane	of CO_2	(g-mol)
		L _L _V		
204 00	57.46	100331	0.0841	64 0
204.00	57.96	0.0304	0.0850	66.2
207.00	55.96	0.0214	0.0083	60.2 60.7
202.00	53.45	0.0310	0.0000	63.7
200.00	53.65	0.0310	0.0751	68.9
198.00	50.93	0.0277	0.0791	59.8
198.00	52.02	0.0233	0.0404	65.9
198.00	52.02	0.0200	0.0267	68.3
196.00	49.09	0.0323	0.0436	61.0
196.00	49 30	0.0284	0.0394	62.2
196.00	49.36	0.0285	0.0259	63.3
196.00	49.36	0.0303	0.0263	62.9
196.00	49.43	0.0256	0.0267	62.5
196.00	50.38	0.0204	0.0181	66.8
196.00	50.44	0.0182	0.0251	61.1
196.00	50.59	0.0206	0.0188	67.0
196.00	50.66	0.0159	0.0029	63.8
196.00	51.00	0.0178	0.0022	69.2
194.00	46.17	0.0437	0.0283	59.6
194.00	46.44	0.0397	0.0400	59.0
194.00	47.52	0.0292	0.0238	61.3
194.00	47.73	0.0210	0.0046	64.7
194.00	47.80	0.0246	0.0012	64.0
194.00	47.87	0.0274	0.0000	63.9
192.00	43.85	0.0551	0.0305	58.04
192.00	44.67	0.0374	0.0124	59.4
192.00	44.87	0.0266	0.0047	60.9
192.00	45.15	0.0361	0.0134	61.8
192.00	45.49	0.0291	0.0031	61.2
190.00	42.22	0.0466	0.0139	57.8
190.00	42.43	0.0387	0.0032	58.7
190.00	42.56	0.0411	0.0101	60.3
190.00	42.70	0.0361	0.0035	63.4
188.00	39.37	0.0623	0.0143	56.3
188.00	39 .77	0.0468	0.0042	57.0
188.00	39.91	0.0473	0.0039	57.3
188.00	40.11	0.0455	0.0035	56.9
186.00	37.60	0.0592	0.0035	55.7
			ħ	
107.15	51.00	$\mathbf{K} (\mathbf{L}_1 - \mathbf{L}_2 = \mathbf{V}$	0 0014	100 57
197.13	52.09	0.0033	0.0014	200.57
177.00	55 25	0.0090	0.0233	86 67
200.03	57.53 57.53	0.0073	0.0392	03.10
200.18	54.33	0.0073	0.0234	99.10
200.19	55.04	0.0044	0.0124	89.74
201.03	56 37	0.0000	0.0504	83.86
202.33	56.85	0.0104	0.0522	105.84
202.91	57.86	0.0137	0.0747	78.24
~~~~~	0,.00	0.0107	0.0717	

measured n-hexane compositions in the n-hexane-lean phase averaged 0.61% for L1-L2-V points and was 0.23% for the K point and 3.64% for the LCST. (Difference is defined here as (Lin value - this value)/(this value).) For the n-hexane-rich phase this difference averaged -1.84% for L1-L2-V points and was -6.51% for the K point. The pressures agreed to an average of 0.75%. The discrepencies between Lin's data and this work can undoubtedly be ascribed to the differences in purities in the materials used. These effects, of course, would be magnified in the critical regions due to the "flatness" of the T-x curve.

## Glossary

С	critical point
К	the K point or critical end point of an L1-L2-V region
	occurs when $L_2 = V$ in the presence of $L_1$
L ₁	liquid phase rich in solute
L	liquid phase lean in solute
LĊST	lower critical solution temperature, this occurs when
	L ₁ and L ₂ are critical with each other

Table VI.	Raw Data for the n-Hexane-Rich Liquid Phase L, of
the System	Methane + Carbon Dioxide + $n$ -Hexane

the System Met	nane + Ca	roon Dioxide	+ n-Hexane	-
		mole	mole	molar
	press	fraction of	fraction	vol mL/
temp K	otm	n-hevano	of CO	(g-mol)
temp, K	atin	n-nexane	01 CO2	(g-1101)
	L	$CST(L) = L_{2} -$	$\mathbf{V}$ )	
184.14	35.41	0.1305	0.0157	56.26
184 76	35.96	0 1495	0.0176	56 72
199.61	41 13	0.1566	0.01/0	57.98
100.01	41 20	0.1500	0.0310	59.00
107.03	41.35	0.1090	0.0260	50.22
190.69	42.36	0.1701	0.0252	59.32
191.13	42.90	0.1707	0.0338	58.65
193.74	45.36	0.1306	0.0454	58.31
199.18	51.82	0.1408	0.0743	5 <b>8.9</b> 0
199.34	51.75	0.1251	0.0674	58.27
202.63	55.70	0.1161	0.0901	59.15
188.41	39.50	0.1141	0.0310	56.60
191 17	42.49	0.0850	0.0323	57.36
171.17	12.19	0.0000	0.0020	37.50
		$K(L, -L_2 = V)$	)	
196.89	52.22	0.2365	0.0123	60.71
197.76	52.28	0.2304	0.0344	63.22
107.00	52.20	0.2201	0.0211	62.80
197.92	51.90	0.2252	0.0428	61.00
190.10	52.09	0.2204	0.0334	01.29
198.13	52.90	0.2334	0.0079	64.76
199.87	54.27	0.2035	0.0883	62.84
203.24	57.06	0.1423	0.1380	56.89
203.66	57.67	0.1482	0.0848	59.03
		$L_1 - L_2 - V$		
204.00	58.07	0.1152	0.1078	58.5
204.00	58.21	0.1184	0.1018	59.2
202.00	55.16	0.1302	0.0807	59.5
202.00	55.36	0.1261	0.1226	55.4
202.00	55.43	0.1364	0.0938	57.4
202.00	55.63	0 1548	0.0664	59.5
202.00	52.00	0.1345	0.0774	59.0
108.00	51 21	0.1343	0.0774	59.0
190.00	51.21	0.1770	0.0009	59.0
196.00	51.54	0.1740	0.0399	56.1
198.00	52.08	0.2135	0.0000	65.1
198.00	52.42	0.2079	0.0429	60.1
198.00	52.68	0.2332	0.0214	64.1
196.00	48.49	0.1626	0.0659	59.2
196.00	49.49	0.1980	0.0419	60.6
1 <b>96</b> .00	49.96	0.2179	0.0278	61.6
196.00	50.04	0.2074	0.0353	60.5
196.00	50.17	0.2171	0.0279	61.3
196.00	50.38	0.2285	0.0312	65.7
196.00	50.65	0 2313	0.0017	61.0
196.00	50.73	0.2322	0.0171	61.5
194.00	46.30	0.1820	0.0191	50.0
104.00	46.50	0.1020	0.0398	27.7 21.1
194.00	40.85	0.2003	0.0293	61.1
194.00	40.91	0.2004	0.0377	60.5
194.00	40.97	0.2098	0.0322	64.0
194.00	46.99	0.2030	0.0286	61.3
194.00	47.04	0.2120	0.0317	64.4
194.00	47.46	0.2151	0.0240	62.2
194.00	47.74	0.2218	0.0172	60.8
192.00	44.12	0.1595	0.0330	59.5
192.00	44.20	0.1845	0.0250	60.5
192.00	44.25	0.1905	0.0277	60.1
192.00	44 25	0 1951	0.0291	63.5
192.00	44.27	0.1931	0.0251	60.3
192.00	44.27	0.1047	0.0230	60.5
102.00	11 00	0.1710	0.0294	61 1
102.00	44.00	0.2130	0.00/3	20 1
192.00	44.93	0.2083	0.018/	00.1
192.00	45.19	0.2166	0.0185	60.3
190.00	41.61	0.1623	0.0244	59.2
190.00	42.23	0.1936	0.0184	59.6
190.00	42.56	0.2044	0.0204	58.8
188.00	39.83	0.1927	0.0228	58.9
188.00	39.83	0.1934	0.0245	58.6
188.00	39.90	0.1983	0.0092	59.6
186.00	37.32	0.1645	0.0059	58.2
186.00	37.45	0.1534	0.0188	57.3
186.00	37.52	0.1690	0.0203	57.5

#### Table VII. Experimental Data for the Methane + n-Hexane Binary^a

	press	mole fraction of <i>n</i> -hexane		mola mL/(	ur vol, g-mol)
temp, K	atm	L	L ₂	L	L ₂
		K (L,-	$L_2 = V$		
195.72	51.33	0.2323	0.0117	57.82	153.86
		L,-]	L ₂ -V		
194.00	48.67	0.2525	0.0179	63.89	67.36
192.00	45.81	0.2458	0.0286	64.09	63.65
190.00	43.08	0.2302	0.0353	62.56	60.24
188.00	40.51	0.2145	0.0434	60.91	58.84
186.00	37.98	0.1982	0.0566	59.99	61.10
184.00	35.61	0.1841	NA	61.13	NA
182.73	34.05	LCST (L 0.1479	$L_1 = L_2 - V)$ 0.1479	57 <b>.9</b> 7	57. <b>9</b> 7

^a Each point given is average of several actual data points. NA =Not measured.

S	solid phase
Т	temperature
17	Vener shees

vapor phase

Registry No. Methane, 74-82-8; pentane, 109-66-0; octane, 111-65-9;

hexane, 110-54-3; carbon dioxide, 124-38-9,

#### Literature Cited

- (1) Hottovy, J. D.; Kohn, J. P.; Luks, K. D. J. Chem. Eng. Data 1981, 26,
- (2) Hottovy, J. D.; Kohn, J. P.; Luks, K. D. J. Chem. Eng. Data 1982, 27, 298.
- (3) Creek, J. L.; Knobler, C. M.; Scott, R. M. J. Chem. Phys. 1981, 74, 3489.
- (4) Lin, Y. N.; Chen, R. J. J.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data 1977, 22, 402.
  (5) Kohn, J. P. AIChE J. 1961, 7, 514.
- (6) Hottovy, J. D. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN, 1980. (7) Mraw, S. C.; Hwang, S.-C.; Kobayashi, R. J. Chem. Eng. Data 1976,
- 23, 135. (8) Graboski, M. S.; Daubert, T. E. Ind. Eng. Chem. Process Des. Dev.
- 1978, 17, 443. (9) Graboski, M. S.; Daubert, T. E. Ind. Eng. Chem. Process Des. Dev. 1978, 17, 448.
- Chu, T.-C.; Chen, R. J. J.; Hcappelear, P. S.; Kobayashi, R. J. Chem. (10)Eng. Data 1978, 21, 41.

Received for review July 8, 1982. Accepted November 22, 1982. We are grateful for the support of this work provided by the Gas Processors Association (Research Project 795), Tulsa, OK. The apparatus was assembled under research grants by the National Science Foundation.

.. ... .

# **Isentropic Compressibility of an Ideal Ternary Solution**

William E. Acree, Jr.

Department of Chemistry, Kent State University, Kent, Ohio 44242

An equation is given for the isentropic compressibility of an ideal ternary solution and is used to calculate excess isentropic compressibilities of o-xylene + acetone + benzene, o-xylene + acetone + cyclohexane, and o-xylene + acetone + carbon tetrachloride mixtures. The results of these calculations indicate that the three ternary mixtures do not exhibit the large deviations from ideality as had been suggested by the earlier calculations of Prasad and Prakash.

In several recent publications appearing in this journal (1-3), the excess isentropic compressibility  $K_s^{ex}$  of a liquid mixture was defined as the difference between the observed isentropic compressibility and that of an ideal solution  $K_s^{ideal}$  as in eq. 1.

$$K_{*}^{\text{ex}} = K_{*} - K_{*}^{\text{ideal}} \tag{1}$$

The isentropic compressibility of the ideal solution was represented as the mole fraction average of the isentropic compressibilities of the pure liquids  $K_{a}^{o}$  (eq 2). While many

$$K_{s}^{\text{ideal}} = \sum_{i=1}^{N} X_{i} K_{s}^{\circ}_{i}$$
(2)

thermodynamic and physical properties of an ideal solution are correctly described by mole fraction averages, the isentropic compressibility is not one of these properties.

The isentropic compressibility of any solution is related to the isothermal compressibility  $K_1$  by

$$K_{s} = K_{t}(C_{v}/C_{p}) \tag{3}$$

$$K_s = -(\partial \ln V / \partial P)_s \tag{4}$$

$$K_{\tau} = -(\partial \ln V / \partial P)_{\tau}$$
 (5)

Table I.	Excess Isentropic Compressibilities of	
Several T	ernary Mixtures	
	······································	-

		$10^{12}K_{\odot}$	$K_{\rm s}^{\rm ex}$	
X 2	X ₃	cm ² dyn ⁻¹	eq 1 and 2	eq 1 and 9
	o-Xyler	ne + Acetone	+ Benzene	
0.00	0.60	64.22	-0.59	-0.76
0.10	0.50	65.24	-1.73	-1.02
0.20	0.40	66.33	-2.80	-1.55
0.30	0.30	67.66	-3.63	-1.90
0.40	0.20	69.44	-4.01	-1.84
0.50	0.10	71.15	-4.46	-1.91
0.60	0.00	73.55	-4.22	-1.35
0.50	0.50	74.92	-2.61	-1.60
	o-Xylene	+ Acetone +	Cyclohexan	e
0.00	0.60	72.04	-1.86	-1.72
0.10	0.50	72.69	-1.85	-1.22
0.20	0.40	73.02	-2.17	-1.09
0.30	0.30	73.30	-2.54	-0.98
0.40	0.20	73.45	-3.03	-1.44
0.50	0.10	73.53	-3.60	-1.14
0.60	0.00	73.55	-4.22	-1.35
0.50	0.50	86.68	+1.58	+2.26
o-X	Xylene + A	cetone + Car	bon Tetrachl	oride
0.00	0.60	67.11	-1.65	-1.59
0.10	0.50	67.59	-2.67	-2.01
0.20	0.40	68.19	-3.57	-2.41
0.30	0.30	69.24	-4.03	-2.36
0.40	0.20	70.68	~4.09	~1.92
0.50	0.10	72.07	-4.20	-1.80
0.60	0.00	73.55	-4.22	-1.35
0.50	0.50	78.30	-2.52	-1.50

the ratio of heat capacities at constant volume and pressure, which are themselves related through

C,

$$c_p - C_v = \alpha^2 V T / K_t \tag{6}$$

the coefficient of thermal expansion ( $\alpha = (\partial \ln V / \partial T)_P$ ). The isothermal compressibility of an ideal solution can easily be